ЛЕКЦИЯ 2.

Виды и типовые механизмы действия лекарственных средств

Виды действия лекарственных средств

- - главное (являющееся целью применения) и побочное (полезное, нейтральное, нежелательное = осложнение)
- прямое и косвенное
- избирательное и неизбирательное
- по локализации эффекта: местное, резорбтивное, рефлекторное
- - по органной или тканевой специфичности: нейротропное, кардиотропное, гепатоторопное, нефротропное, иммунотропное, миелотропное
- обратимое и необратимое

Нежелательное действие

А) при коротких курсах или однократном применении

- как результат механизма действия (возникают при использовании терапевтических доз) супрастин – сонливость, атропин – сухость во рту, тахикардия
- как результат передозировки токсическое действие (по органам нейротоксическое, кардиотоксическое и др.; токсическое действие на плод: эмбриотоксическое, фетотоксическое, тератогенное)
- как результат генетических особенностей организма: недостаток псевдохолинэстеразы резкое нарастание токсичности дитилина, дефицит глюкозо-6-фосфат дегидрогеназы в эритроцитах гемолиз
- аллергия (гиперреакция иммунной системы на чужеродное вещество)
- идиосинкразия (непереносимость)

Нежелательное действие

Б) при длительном применении:

- привыкание = толерантность (биохимическая адаптация систем биотрансформации), тахифилаксия
- кумуляция (истинная и функциональная)
- вторичные эффекты, обусловленные нарушением метаболических, биологических или иммунных процессов (глюкокортикоиды – остеопороз, диабет, катаракта, дерматит; нейролептики – паркинсонизм; антибиотики – дисбактериоз; цитостатики – инфекционные заболевания из-за снижения иммунитета; аспирин – язвы желудка; анальгин - агранулоцитоз)
- мутагенное, канцерогенное действие
- лекарственная зависимость (психическая, физическая), абстиненция
- Синдром отмены = рикошета

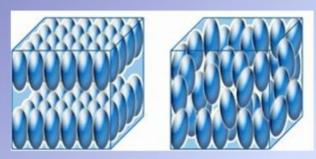
Механизм действия

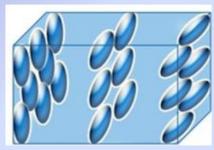
Механизм действия - закономерная последовательность событий, инициируемая лекарственным веществом, ведущая к формированию какого-либо биологического эффекта.

Выделяют 3 типа механизмов действия:

- Молекулярные механизмы, связанные с межмолекулярными взаимодействиями (рецепторное действие, связывание с ферментами ...)
- Физиологические механизмы, связанные с перестройкой регуляторных механизмов на уровне функциональных систем (рефлекторное действие, антигипертензивное действие ...)
- Энергоинформационное (для гомеопатических средств)

Типовые молекулярные механизмы действия


- Физико-химический
- Субстратный (истинные или ложные субстраты)
- Ферментный (истинные ферменты, активаторы и ингибиторы ферментов, кофакторы)
- Рецепторный (активация или блокирование, аллостерическая регуляция аффинитета и активности)
- Геномный или эпигеномный (регуляция экспрессии адаптогенами, посттрансляционной модификации препаратами на основе микроРНК, нарушения структуры ДНК антибиотиками и цитостатиками, генетические векторы средства лечения генных заболеваний)
- Каскадный (триггерный)


Физико-химический механизм

- ингаляционные анестетики накапливаются в липидном слое мембран нейронов с нарушением функций мембранассоциированных белков;
- антациды химически нейтрализуют соляную кислоту желудочного сока, гидрокарбонат натрия ощелачивает мочу и тем самым усиливает выведение органических кислот;
- холестирамин сорбирует на себе холестерин пищи, выводя его из обмена;
- вяжущие средства вызывают коагуляцию белков слизистых;
- диметилсульфоксид является ловушкой радикалов.

Физико-химический механизм

Жидкие кристаллы

Увеличенное изображение жидкого кристалла По структуре ЖК представляют собой жидкости, похожие на желе, состоящие из молекул вытянутой формы, определённым образом упорядоченных во всем объёме этой жидкости.

Субстратный механизм

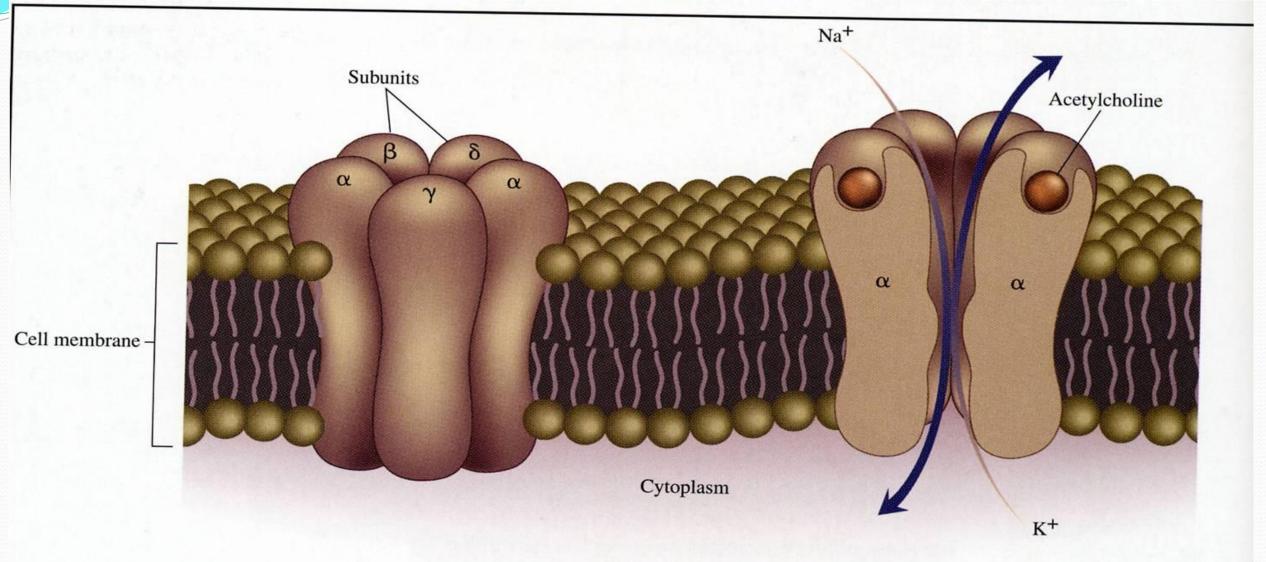
- «истинные субстраты», которые вступают в метаболические трансформации в организме (глюкоза, фруктоза, энергодающие органические кислоты, макроэрги, аминокислоты, фосфолипиды, предшественники нуклеотидов, макроэлементы, соли железа)
- «ложные субстраты», встраивающиеся в метаболическую цепочку или связывающие соответствующие ферменты (метилдофа, цитостатики-антиметаболиты фторурацил, меркаптопурин, противовирусные рибавирин, ацикловир)

Типовые механизмы действия лекарственных веществ

- **Ферментный механизм** (панкреатин, фестал, мезим и др. ферменты поджелудочной железы; лидаза гиалуронидаза; L-аспарагиназа; коллагеназа; экстракт ананаса и папайи бромелаин и папаин)
- **Рецепторный механизм** (взаимодействие лекарственного вещества со специализированной структурой биосубстрата участком мембраны, активными и регуляторными центрами ферментов, белками ионных каналов, регуляторными участками ДНК в хромосомах)
- Каскадный (триггерный) механизм (нейропептиды, гипоталамические рилизинг-факторы; индукторы интерферонов)
- Энерго-информационный механизм (гомеопатические средства)

- Основной механизм действия лекарственных средств, обеспечивающий их специфические эффекты. Рецепторный механизм подразумевает наличие специализированной молекулярной структуры рецептора (от лат.recipe воспринимаю, беру), и вещества, способного специфически (и чаще всего обратимо) с ним связаться лиганда.
- Эндогенные лиганды медиаторы, гормоны, тканевые регуляторы (аутокоиды), способные возбуждать соответствующий рецептор
- Способность вещества связываться с рецепторами описывается термином «аффинитет», а способность возбуждать рецептор при связывании термином «внутренняя активность».

- Лекарственные вещества, обладающие аффинитетом к рецепторам определенного типа и обладающие внутренней активностью, имитируют эффект воздействия на рецептор эндогенного лиганда и называются миметики (адреномиметики, холиномиметики, ГАМК-миметики ...).
- Лекарственные вещества, обладающие аффинитетом к рецепторам определенного типа, но не обладающие внутренней активностью, не способные вызвать в рецепторе ту же конформационную перестройку, что и эндогенный лиганд, и фактически экранирующие рецептор от эндогенного лиганда, называются блокаторами или литиками (адреноблокаторы, холинолитики, дофаминоблокаторы ...). Выделяют также группу «блокаторов с внутренней активностью» способны связываться с рецептором и его экранировать от эндогенного лиганда, но при этом слабо (во много раз меньше, чем эндогенный лиганд), способны его возбуждать (пиндолол).

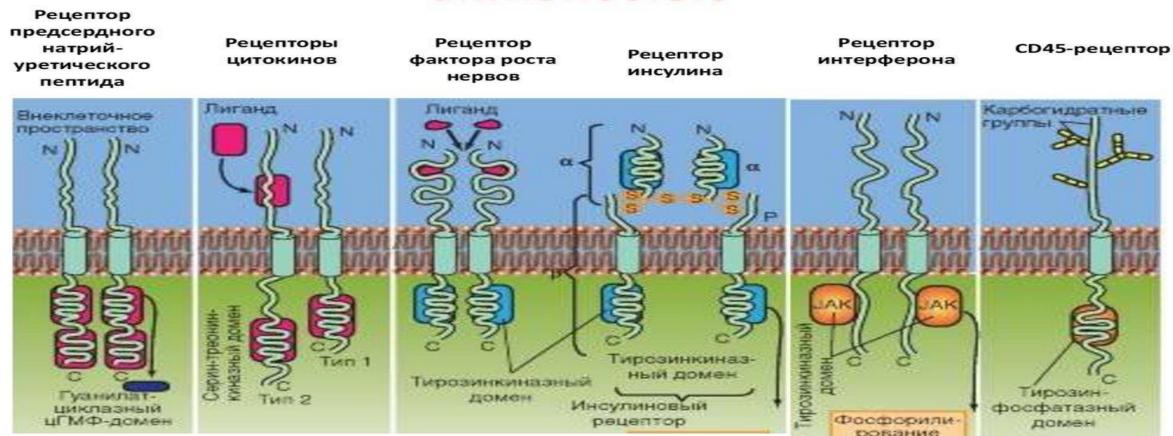

- Классификация рецепторов строится по эндогенному лиганду (если он идентифицирован), который с ним связывается и возбуждает. Однако есть рецепторы, эндогенные лиганды к которым не идентифицированы (бензодиазепиновые, для которых лиганды пока гипотетические).
- Подтипы рецепторов могут различаться по кодирующим их образование генам, локализации в организме (бета1-адренорецептор проводящая система сердца, клетки ЮГА почек, бета2-адренорецептор гладкие мышцы, печень, бета3-адренорецепторы жировые клетки, гладкомышечные клетки мочевого пузыря) и в клетке (мембранные, цитоплазменные, ядерные), способности активироваться или блокироваться различными синтетическими (экзогенными) соединениями (М-холинорецепторы активируются мускарином, N-холинорецепторы никотином), механизмами сопряжения и эффектами.

Главная задача рецептора, расположенного на цитоплазматической мембране - передать сигнал о появлении во внеклеточном пространстве лиганда во внутриклеточную среду, вызвав специфическое изменение обменных процессов в клетке. Такая передача осуществляется специфическими механизмами сопряжения.

Существуют следующие механизмы сопряжения мембранных рецепторов и связанных с ними эффектов:

- Рецептор-канальное сопряжение (изменение проницаемости ионных каналов)
- Рецептор-ферментное сопряжение (прямое, через систему G-белков, через систему транскрипционных факторов)
- Рецептор-рецепторное сопряжение

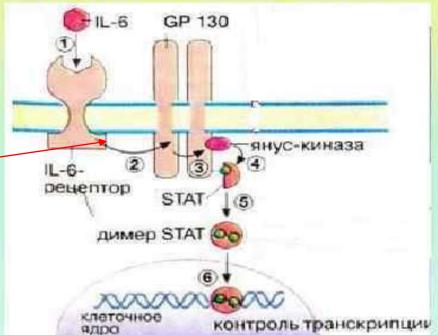
Рецептор-канальное сопряжение



Рецептор-канальное сопряжение

- Под влиянием активированного рецептора происходит раскрытие соответствующего канала, что обеспечивает перемещение через клеточную мембрану определенных ионов (катионы калия, натрия, кальция, хлоридный анион). При этом меняется их трансмембранные концентрации и градиенты, ведущие к изменению поляризации мембраны (деполяризация, гиперполяризация, реполяризация) и ее возбудимости, способности генерировать и проводить потенциал действия.
- Типично для возбудимых тканей (нервной, мышечной, секреторной)

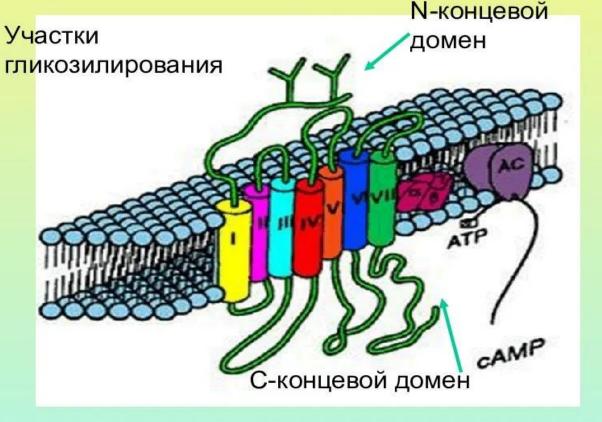
Рецептор-ферментное сопряжение прямое


Рецепторы с собственной ферментативной активностью

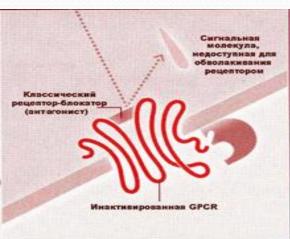
Рецептор-ферментное сопряжение с

транскрипционными факторами

МЕХАНИЗМ ДЕЙСТВИЯ ЦИТОКИНОВЫХ РЕЦЕПТОРОВ

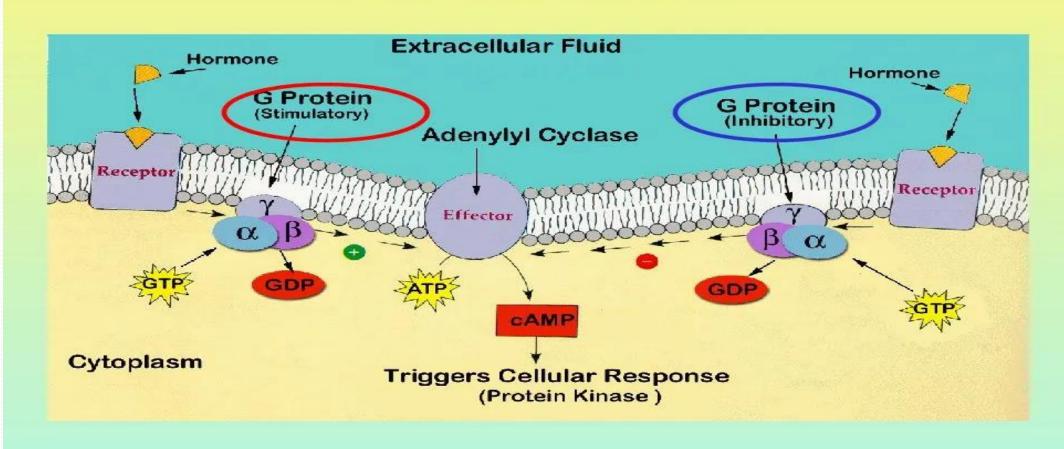

STAT – фактор транскрипции (signal transducers and activation of transcription)

- 1 СВЯЗЫВАНИЕ РЕЦЕПТОРА С ЛИГАНДОМ
- 2—СТИМУЛЯЦИЯ ДИМЕРИЗАЦИИ БЕЛКА-ПЕРЕНОСЧИКА СИГНАЛА. ЭТИ БЕЛКИ ПЕРЕДАЮТ СИГНАЛ НА ТИРОЗИНКИНАЗУ
- 3-АКТИВАЦИЯ ТИРОЗИНКИНАЗЫ (ЯНУС-КИНАЗЫ,ИМЕЮЩЕЙ 2 АКТИВНЫХ ЦЕНТРА)
- 4 ФОСФОРИЛИРОВАНИЕ ФАКТОРОВ ТРАНСКРИЩЦИИ (STAT)
- 5 ФАКТОР ПЕРЕХОДИТ В АКТИВНУЮ ФОРМУ И ОБРАЗУЕТ ДИМЕР
- 6 ТРАНСЛОКАЦИЯ ДИМЕРА В ЯДРО И ИНДУКЦИЯ ТРАНСКРИЩИИ


Фосфатаза

Рецептор-ферментное сопряжение через G-белок (GPCR-рецепторы, серпентинные, 7-ТМ-рецепторы)

СТРУКТУРА РЕЦЕПТОРОВ,СОПРЯЖЕННЫХ С GБЕЛКОМ



Рецептор-ферментное сопряжение через G-белок (GPCR-рецепторы, серпентинные, 7-ТМ-рецепторы)

ВИДЫ G-БЕЛКОВ ПО ОТНОШЕНИЮ К АДЕНИЛАТЦИКЛАЗЕ

Механизм работы G-белков

- В спокойном состоянии G-белок сопрягается с ГДФ, при конформационных изменениях рецептора при его возбуждении меняется положение α-субъединицы G-белка с высвобождением ГДФ, на место которого поступает ГТФ. Дополнительная макроэргическая связь вновь меняет конформацию субъединиц G-белка, открывается каталитическая β-субъединица, аллостерически активизирующая (или в случае Gi-белка аллостерически ингибирующая) аденилатциклазу.
- С G-стимулирующими белками сопряжены β-адренорецепторы, Д-рецепторы, Н2-гистаминовые рецепторы, рецепторы к глюкагону, АКТГ, ФСГ, ЛГ, ТТГ, парат-гормону, PgE2, PgI2.
- С G-ингибирующими белками сопряжены M2-холинорецепторы, α2адренорецепторы, опиатные рецепторы, 5-HT4-рецепторы к серотонину
- При одновременной активации Gs и Gi белков активность аденилатциклазы примерно 30% от максимально возможной

Эффекты, связанные с накоплением цАМФ

- В возбудимых тканях (нервные клетки, клетки проводящей системы сердца, миокард) под влиянием цАМФ-ПК происходит фосфорилирование белков кальциевых каналов с их открытием и деполяризацией мембраны, снижением порога формирования потенциала действия.
- В гладкомышечных клетках под влиянием цАМФ-ПК происходит фосфорилирование белков, обеспечивающих активное закачивание цитоплазматического кальция во внутриклеточные депо (саркоплазматический ретикулюм), при этом концентрация цитозольного кальция снижается, он выводится из комплекса с кальций-зависимой протеинкиназой (киназа легких цепей миозина), прекращается фосфорилирование комплекса актин-миозин, и происходит расслабление гладких мышц (бронхи, сосуды, мочевой пузырь, кишечник, матка).
- В клетках **яичников и спермиогенного эпителия** происходит фосфорилирование рецепторов к ФСГ и ЛГ, повышение чувствительностик гормонам и активация геномных механизмов созревания половых клеток

Эффекты, связанные с накоплением цАМФ

- В клетках, ответ которых на стимуляцию лигандом проявляется изменением метаболизма (клетки печени, жировой клетчатки, секреторный эпителий слизистых) под влиянием цАМФ-ПК происходит фосфорилирование белков, отвечающих за развитие соответствующего ответа. В печени происходит активация фосфорилазы (расщепление гликогена и выход глюкозы в кровь), а также снижение активности гликогенсинтазы. В клетках жировой клетчатки происходит активация триглицеридлипазы, расщепляющей нейтральные жиры, и активизируются реакции окисления свободных жирных кислот. В клетках слизистой желудка усиливается интенсивность окислительновосстановительных реакций, ведущих к генерации протонов. В клетках слизистой бронхов, слюнных железах, поджелудочной железе усиливается синтез белковых компонентов секрета.
- В *клетках крови* (тромбоциты, лимфоциты) тормозится функциональная активность

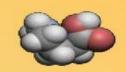
Механизм работы G-белков

• **Gq**-белок активирует фермент фосфолипаза С, который расщепляет мембранные фосфолипиды, в концевом положении которых находится фосфоинозитол, с образованием двух сигнальных молекул - ДАГ и ИФ3. ДАГ активирует зависимую от него ПК-С, влияющую на свой комплекс белковых синтезов. ИФ3 встраивается в мембрану саркоплазматического ретикулума (гладкомышечные клетки) и формирует кальциевую пору, сквозь которую по градиенту концентрации из внутриклеточных депо в цитозоль поступает Са, активизируется Са-зависимые ПК, происходит фосфорилирование комплекса актин-миозин с сокращением гладких мышц (сужение зрачка, повышение тонуса бронхов, повышение тонуса матки). По такому механизму сопряжения работают М1 и М3холинорецепторы, рецепторы к ангиотензину, α1-адренорецепторы, 5-НТ1с и 5HT2 рецепторы к серотонину, рецепторы к тиролиберину, V1-рецепторы к вазопрессину.

Механизм работы G-белков

- Go-тип белка, сопряжен с M2-холинорецепторами сердца, но фосфорилируют не аленилатциклазу, а белки калиевых каналов проводящей системы сердца, открытие которых ведет к гиперполяризации мембраны клеток водителей ритма и снижению частоты сердечных сокращений.
- **Gt**-белки присутствует в палочках и колбочках сетчатки и сопряжены с цветовоспринимающими белками в качестве рецепторной части (возбуждаются фотонами, которые являются аналогами лигандов для таких рецепторов). Gt-белки сопряжены с ферментом цГМФ-фосфодиэстераза, который разрушает цГМФ в цветовоспринимающих клетках сетчатки, обеспечивая тем самым процессы фототрансдукции (перевод оптического сигнала в нейрональный поток импульсов).

Цитозольные рецепторы

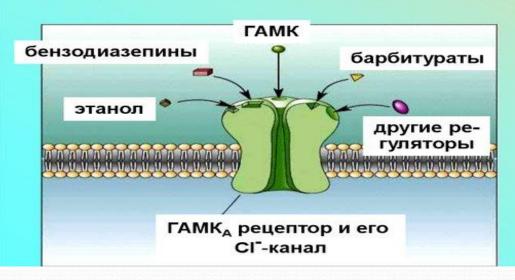


Цитозольные рецепторы

Липидорастворимые лиганды (стероидные гормоны - глюкокортикоиды, минералокортикоиды, половые гормоны, витамин Д) и гормон щитовидной железы трийодтиронин (проникает через мембраны с помощью особого переносчика) имеют внутриклеточные рецепторы, к которым эти лиганды могут диффундировать (в силу своей липофильности) в цитозоль клетки. После связи с цитозольными рецепторами лиганд-рецепторные комплексы транслоцируются в ядро клетки, связываются с нуклеопротеинами, окружающими ДНК, в зоне, соседней с геном, которого необходимо активировать, и изменяют транскрипцию специфических генов. Структура таких «генно-активных» рецепторов установлена. В фоновом состоянии полипептидная цепочка рецептора к стероидам связана с особым стабилизирующим белком (белком теплового шока hsp90), который удерживает не активную конфигурацию рецептора. После связи с лигандом происходит отщепление hsp90, открытие конфигурации домена связывания с нуклеопротеинами ДНК, и домена активации транскрипции (скорее всего – маяк для присоединения ферментного комплекса транскрипции – топоизомераз и полимераз нуклеиновых кислот)

Рецептор-рецепторное сопряжение

Рецепторы ГАМК



Выделяют два основных типа рецепторов ГАМК:

(GABA – gamma-aminobutyric acid)

ГАМК_А — ионотропные, из 5 белковых субъединиц, образующих хлорный канал, обычно расположены на постсинаптической мембране; вызывают ТПСП.

ГАМК_Б — метаботропные, связаны с калиевым каналом, чаще расположены на пресинаптической мембране; тормозят экзоцитоз различных медиаторов.

Лучше изучен ГАМК_А рецептор, агонисты которого (прежде всего, барбитураты и бензодиазепины) имеют огромное клиническое значение.

Рецепторы к одному лиганду в разных тканях могут обладать аффинитетом разной степени, что может приводить к разным физиологическим эффектам на малые и высокие дозы препарата. Так, бензодиазепиновые рецепторы в эмоциогенных структурах мозга (лимбическая система) обладают высоким аффинитетом, и могут возбуждаться малыми концентрациями препарата (противотревожное действие), средняя степень афинности характерна для бензодиазепиновых рецепторов в ядрах вегетативных и нейроэндокринных центров (сосудодвигательный центр продолговатого мозга, гипоталамус, эпифиз), поэтому в средних дозах проявляют антигипертензивное и вегетостабилизирующее, противострессовое действие. В моторной коре, восходящей ретикулярной формации и нейронах спинного мозга имеются низкоафинные бензодиазепиновые рецепторы, возбуждаемые только высокой концентрацией препарата. С ними связаны снотворное, общеугнетающее, противосудорожное, потенцирующее и наркозное действие бензодиазепиновых препаратов.

Рецептор-белковый механизм действия

В ЦНС в некоторых случаях в качестве рецептора могут выступать особые неферментные белки-транспортеры медиаторов, обеспечивающие возврат высвободившего из пресинаптического окончания медиатора (дофамина, норадреналина, адреналина, серотонина) или его метаболита (холин, образующийся из ацетилхолина) из синаптической щели обратно в пресинапс (реаптейк) для повторного использования. Лекарственный препарат, связываясь с таким рецептором, меняет активность белкатранспортера (чаще – снижает), в результате медиатор накапливается в синаптической щели и дополнительно стимулирует рецепторы постсинптической мембраны. По такому механизму работают многие антидепрессанты.